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Abstract

One of the most frequently applied low-level operations
in computer vision is the conversion of an RGB camera im-
age into its luminance representation. This is also one of the
most incorrectly applied operations. Even our most trusted
softwares, Matlab and OpenCV, do not perform luminance
conversion correctly. In this paper, we examine the main
factors that make proper RGB to luminance conversion dif-
ficult, in particular: 1) incorrect white-balance, 2) incorrect
gamma/tone-curve correction, and 3) incorrect equations.
Our analysis shows errors up to 50% for various colors are
not uncommon. As a result, we argue that for most com-
puter vision problems there is no need to attempt luminance
conversion; instead, there are better alternatives depending
on the task.

1. Introduction and Motivation
One of the most frequently applied operations in com-

puter vision and image processing is the conversion of an
RGB image into a single-channel luminance representation.
Luminance is a photometric measurement that quantifies
how the human eye perceives radiant energy emitting from
a scene. As such, RGB to luminance conversion is used as a
way to convert an RGB image into its perceived brightness
representation. Luminance is generally represented by the
variable, Y , which comes from the CIE 1931 XYZ color
space definition for which Y is defined as the luminosity
function of a standard human observer under well-lit con-
ditions. Luminance is routinely used in a variety of vision
tasks, from image enhancement [22, 27, 29] to feature de-
tection [2, 20], to physical measurements [10, 11, 26].

There are a number of commonly used methods to con-
vert an RGB image to Y . For example, the widely used
YIQ and YUV color spaces use the weighted average Y =
0.299R + 0.587G + 0.114B, while more recent methods
adopt a weighted average of Y = 0.2126R + 0.7152G +
0.0722B. In some cases, a simple RGB average of Y =
(R+G+B)/3 is used. Clearly, these all cannot be correct.
In addition, there are other factors at play in this conver-
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Figure 1. This figure shows examples of errors that arise due to
improper luminance conversion. The ground truth luminance for
this experiment is captured from a hyperspectral camera.

sion, including the color space’s assumed white-point and
nonlinear mappings (e.g. gamma correction). Radiomet-
ric calibration methods [7, 16, 18, 19] have long known
that cameras use proprietary nonlinear mappings (i.e. tone-
curves) that do not conform to sRGB standards. Recent
work in [3, 15, 17, 31, 14] has shown that these tone-curves
can be setting-specific. Fig. 1 shows examples of errors
caused by different factors in the color space conversion
from sRGB to luminance. Interestingly, however, computer
visions algorithms still work in the face of these errors. If
our algorithms work with incorrect luminance conversion,
why then are we even bothering to attempt luminance con-
version?

Contribution This work offers two contributions. First,
we systematically examine the challenges in obtaining true
scene luminance values from a camera RGB image. Specif-
ically, we discuss the assumptions often overlooked in the
definition of standard color spaces and onboard camera
photo-finishing that are challenging to undo when perform-
ing luminance conversion. We also discuss the use of in-
correct equations - e.g YIQ or HSV - that are erroneously
interpreted as luminance. Our findings reveal it is not un-
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common to encounter conversion errors up to 50% from the
true luminance values. Our second contribution is to advo-
cate that for many vision algorithms, alternatives to lumi-
nance conversion exist and are better suited for the task at
hand.

2. Related Work
There is little work analyzing the correctness of lumi-

nance conversion with respect to an imaged scene. Many
approaches in the published literature provide a citation to
conversion equations given in standard image processing
textbooks (e.g., [5]) and assume the conversions to be ac-
curate. There has been work, however, that describes the
various color spaces and their usages. Süsstrunk et al. [28]
reviewed the specifications and usage of standardized RGB
color spaces for images and video. This work described
a number of industry-accepted RGB color spaces, such
as standard RGB (sRGB), Adobe RGB 98, Apple RGB,
NTSC, and PAL. This work serves as a reminder that it is
important to be clear about which color space images are
in before doing a conversion. Others have examined factors
that affect the color distributions of an imaged scene. In par-
ticular, Romero et al. [25] analyzed color changes of a scene
under variation of daylight illuminations. Their conclusion
is that the values of chromaticity coordinates have signifi-
cant changes while the values of luminance coordinates are
less effected. Kanan et al. [13] analyzed the effect of thir-
teen methods for converting color images to grayscale im-
ages (often considered to be luminance) on object recogni-
tion. They found, not surprisingly, that different conversion
methods result in different object recognition performance.

There is a large body of work on radiometric calibration
of cameras (e.g. [7, 16, 18, 19]). These works have long
established the importance of understanding the nonlinear
mapping of camera pixel intensities with respect to scene
radiance. These methods, however, do not explore the rela-
tionship of their linearized camera values to the true scene
luminance as defined by CIE XYZ.

3. Factors for Luminance Conversion
3.1. Preliminaries: CIE 1931 XYZ and Luminance

Virtually all modern color spaces used in image process-
ing and computer vision trace their definition to the work
by Guild and Wright [9, 30], whose work on a device inde-
pendent perceptual color space was adopted as the official
CIE 1931 XYZ color space. Even though other color spaces
were introduced later (and shown to be superior), the CIE
1931 XYZ remains the de facto color space for camera and
video images.

CIE XYZ (dropping 1931 for brevity) established three
hypothetical color primaries, X , Y , and Z. These primaries
provide a means to describe a spectral power distribution
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Figure 3. The sRGB and NTSC color spaces primaries and white-
points as defined in the CIE XYZ color space. These establish the
mapping between CIE XYZ and sRGB/NTSC and vice-versa.

(SPD) by parameterizing it in terms of the X , Y , and Z.
This means a three-channel image I under the CIE XYZ
color space can be described as:

I(x) =

∫
ω

Cc(λ)R(x, λ)L(λ)dλ, (1)

where λ represents the wavelength, ω is the visible spec-
trum 380 − 720nm, Cc is the CIE XYZ color matching
function, and c = X,Y, Z are the primaries. The term
R(x, λ) represents the scene’s spectral reflectance at pixel x
and L(λ) is the spectral illumination in the scene. In many
cases, the spectral reflectance and illumination at each pixel
are combined together into the spectral power distribution
S(x, λ) (see Fig. 2). Therefore, Eq. 1 can be rewritten as:

I(x) =

∫
ω

Cc(λ)S(x, λ)dλ. (2)

In this case, any S(x) that maps to the same X/Y/Z values is
considered to be perceived as the same color to an observer.
The color space was defined such that the matching function
associated with the Y primary has the same response as the
luminosity function of a standard human observer [4]. This
means that the Y value for a given spectral power distribu-
tion indicates how bright it is perceived with respect to other
scene points. As such, Y is referred to as the “luminance of
a scene” and is a desirable attribute to describe an imaged
scene.

A number of color spaces have been derived from the
CIE XYZ color space. Converting to luminance is essen-
tially mapping a color value in a different color space back
to the CIE Y value. The following describes a number of
factors necessary to get this mapping correct.

3.2. RGB Color Spaces (sRGB/NTSC)

While CIE XYZ is useful for colorimetry to describe the
relationships between SPDs, a color space based on RGB
primaries related to real imaging and display hardware is
desirable. To establish a new color space, two things are
needed - the location of the three primaries (R, G, B) and
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Figure 4. This figure shows the pipeline to obtain sRGB image in consumer cameras. Note that the circles showed in steps 1, 2, and 3
denote for ’white’ point while the coordinate systems represent the corresponding color space.

the white-point in CIE XYZ. The white-point is used to de-
termine what CIE XYZ color will represent white (or achro-
matic colors) in the color space. In particular, it is selected
to match the viewing conditions of an image. For example,
if it is assumed that a person will be observing a display in
daylight, then the CIE XYZ value corresponding to daylight
should be mapped to the new color space’s white value.

Fig. 3 shows examples for the 1996 sRGB and 1987 Na-
tional Television System Committee (NTSC) color spaces.
Here, NTSC is used as an example. There are many other
spaces as noted in [28] - e.g. Adobe RGB, PAL, Apple
RGB, and variations over the years, such as NTSC 1953
and NTSC 1987. Each color space has its own 3× 3 linear
transform based on its respective RGB primaries and white-
point location within CIE XYZ.

For the sRGB primaries, the matrix to convert from
sRGB to CIE XYZ is:XY

Z

 =

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505


RG
B

 . (3)

The transform for NTSC (1987) back to CIE XYZ is:XY
Z

 =

0.6071 0.1736 0.1995

0.2990 0.5870 0.1140

0.0000 0.0661 1.1115


RG
B

 . (4)

In both Eqs. 3 and 4, it is important to note that the R, G,
B values need to be from images encoded in these respec-

tive color spaces. Such R, G, B values are often termed the
“linear RGB” values, since both sRGB and NTSC use a fi-
nal nonlinear gamma function as described in the following.
Gamma sRGB/NTSC were designed for display on CRT
monitors and televisions. These devices did not have a lin-
ear response to voltage and an encoding gamma was ap-
plied to the three R/G/B channels as compensation as shown
in Fig. 3. For example, a red pixel would take the form
R′ = R1/γ , where R is the linear RGB value and R′ is
the resulting gamma encoded value. This nonlinear gamma
was embedded as the final step in the sRGB/NTSC defini-
tion. The gamma for NTSC was set to γ = 2.2; the one for
sRGB can be approximated by γ = 2.2 but is in fact slightly
more complicated [1]. Before sRGB or NTSC color spaces
can be converted back to CIE XYZ, color values must first
be linearized using the inverse gamma.

3.3. Camera Imaging Pipeline

The vast majority of consumer cameras save their im-
ages in the sRGB color space. In an ideal scenario, lumi-
nance can be computed by first applying an inverse gamma
followed by:

Y = 0.2126R+ 0.7152G+ 0.0722B, (5)

which comes directly from Eq. 3. However, while im-
ages are encoded using sRGB, virtually all camera image
pipelines deviate from the sRGB standard. Fig. 4 shows an



overview of the common steps in a camera image pipeline.
First, the camera sensitivity of a camera sensor is not the
same as CIE XYZ. This means that camera images are in
their own raw-RGB color space, which must be converted
to sRGB [14]. Before this happens, the image is generally
white-balanced using a diagonal 3×3 matrix to remove illu-
mination color casts and properly map the scene’s white col-
ors to lie along the achromatic line (i.e., R = G = B). Af-
ter white-balancing, the image’s raw-RGB values are con-
verted to CIE XYZ using a 3 × 3 color correction matrix
(CCM). Once in the CIE XYZ color space, the image can
be mapped to linear-sRGB and the sRGB encoding gamma
is applied. However, most cameras apply their own tone-
curve [7, 16, 18, 19] and/or additional selective color ren-
dering [3, 15, 17, 31] as part of their proprietary photo-
finishing.

Examining the pipeline, we can see that there are two
factors that can affect luminance conversion. If white-
balancing is applied before the CIE XYZ conversion, an
incorrect white-point estimation can cause errors when the
CCM is applied. Next, if the tone-curve deviates strongly
from the sRGB encoding gamma it will introduce errors in
the linearization step when converting back from sRGB to
CIE XYZ.

3.4. Incorrect Y Conversion and Luma

As previously discussed, if a camera manufacturer care-
fully follows the sRGB standard, the gamma decoded
linear-sRGB can be converted back to Y by using Eq. 5.
However, it is often the case that completely incorrect con-
version methods are used. The following are three incorrect
methods commonly found in the computer vision literature.

The first is to compute the average RGB values (which
is typically applied to nonlinear RGB images). This is com-
puted as:

Y =
1

3
(R+G+B). (6)

It is curious to wonder why this would be considered lu-
minance, but as we will show in Sec. 4, this is not a bad
choice.

Another commonly applied conversion from sRGB is to
the YIQ or YUV color spaces [5]. YIQ and YUV are de-
rived from the NTSC 1987 color space, and are technically
defined on the gamma encoded R, G, B values. These color
spaces should be denoted as Y′IQ or Y′UV, where the prime
symbol is used to distinguish Y′ from Y that represents lu-
minance. In the video engineering community, the term
‘luma’ is also used to refer to Y′ and is not intended to rep-
resent luminance. As noted by Poynton [24] this distinc-
tion of luma has been confused in the image processing and
graphics community and is incorrectly interpreted as lumi-
nance. The incorrect luminance conversion is derived from

Eq. 4 as follows:

Y = 0.299R+ 0.587G+ 0.114B. (7)

This equation is the most commonly applied conversion
to luminance found in the academic literature, however, it
is almost always preformed incorrectly. Only if the im-
age is captured in the NTSC color space and the proper
gamma decoding has been applied, then it is a valid con-
version. If used with linear-sRGB images (which most
modern cameras use), this equation attempt sto convert
from the wrong color space, because the transform is
based on different RGB primaries and white-point related
to NTSC and not sRGB. When no gamma decoding is
applied, it converts to luma based of NTSC. There are a
number of well-known methods that use this conversion,
including Matlab’s rgb2gray function and OpenCV’s
cv2.cvtColor function.

Another common conversion often confused with lumi-
nance is the “value” definition in the hue, saturation, value
(HSV) color space [5]. HSV defines value as the maximum
value of the R/G/B channel for each pixel:

Y = max(R,G,B). (8)

As with Eq. 6, the relationship of this conversion to scene
luminance is unclear.
Luminance vs. Luma As previously mentioned, when ap-
plying a conversion on the gamma encoded R,G,B values,
the result should not be called luminance, but is instead re-
ferred to as luma. While certain spaces, e.g. YUV and YIQ,
are defined on the gamma encoded RGB values (and should
technically be written with Y ′), a common practice in the
literature is not to perform the gamma decoding step when
doing a conversion. In this paper, we distinguish this by
adding the term ‘Luma’ to the conversion type – e.g. YIQ-
Luma or sRGB-Luma.

4. Luminance Conversion Analysis
Sec. 3 has discussed the proper sRGB to luminance con-

version and where potential errors can occur either in the
camera imaging pipeline or due to incorrect conversion
methods. The goal of this section is to examine the effect
of each factor, in particular: white-balance, tone-curve, and
erroneous conversion methods (YIQ, HSV, averageRGB).

To establish the ground truth luminance for a scene,
we use Specim’s PFD-CL-65-V10E hyperspectral camera
to capture the spectral power distributions of several real
scenes as well as a 140-patch Macbeth color checker pat-
tern. This allows us to compute the ground truth luminance
by applying the CIE XYZ matching functions directly to the
spectral scene to obtain Y . Our experiments are performed
on synthetic images that allow us to carefully control the
pipeline and on real camera images as described in the fol-
lowing section.



4.1. Computing Synthetic Camera Images

To be able to control various components of the cam-
era image pipeline, we synthesize sRGB images for the fol-
lowing two cameras: 1) a Canon 1Ds Mark III and 2) a
Nikon D40. We do this by emulating the camera processing
pipeline as described in Fig. 4. The sensor sensitivity func-
tions for these cameras were estimated in the work by Jiang
et al. [12]. This allows us to synthesize a camera’s raw-
RGB by applying the associated camera sensitivity func-
tions to the spectral images. Next, we apply white-balance
on the raw-RGB images (the correct white is known from
white patches placed in the scene). After this, the CCM
computed using the methods proposed in [23] is applied to
convert the raw-RGB to CIE XYZ. Finally, the final sRGB
can be computed using either the correct encoding gamma
function (2.2) or the estimated tone-curves of these cameras
available from [17]. Note that all errors are reported in nor-
malized pixel values between [0-1].

4.2. White-Balance with Proper Gamma

Our first experiment examines white-balance’s effect
on luminance conversion. We generate synthetic images
as described in Sec. 4.1 but purposely use the incorrect
color temperatures to white-balance the image - namely
2500K, 4000K, and 10000K (the correct white-balance is
at 6000K). To isolate the errors to white-balance, we use
the proper sRGB encoding gamma of 2.2.

Fig. 5 shows the quantitative luminance error for the
color chart between the ideal white-balanced image and in-
correctly white-balanced images. A jet map is used to high-
light the error between the ground truth and estimated lu-
minance. We show the quantitative error statistics: maxi-
mum (Max), mean (Mean), and standard deviation (Std). It
is clear that the worse white-balancing (2500K) results in
more error. However, the overall errors are not that signifi-
cant, around 1% on average for the worst case.

4.3. Tone-Curve

Our next experiment examines the effect of the camera’s
tone-curves. The proper white-balance is applied; how-
ever, instead of the 2.2 sRGB gamma mapping, we used
the camera-specific tone-curves from [17]. However, when
we linearize the sRGB image, we use the known 2.2 decod-
ing gamma. Fig. 6 shows the quantitative error of the lu-
minance channel for two different cameras. The improper
linearization causes significant errors, ranging from 10% to
18% depending on the camera.

4.4. Wrong Luminance Conversion

In this experiment, we examined the effect of using the
incorrect conversion methods discussed in Sec. 3.4 - YIQ,
HSV and RGB average. Images are rendered with the

Canon 1Ds Mark III Nikon D40
Max Mean Std Max Mean Std

YIQ 0.048 0.018 0.011 0.048 0.018 0.010
1/3 0.127 0.025 0.028 0.126 0.027 0.027

HSV 0.287 0.045 0.053 0.281 0.048 0.053
YIQ-Luma 0.332 0.252 0.083 0.332 0.253 0.083
1/3-Luma 0.349 0.230 0.093 0.350 0.232 0.094

HSV-Luma 0.478 0.271 0.106 0.477 0.274 0.108

Table 1. [Color chart] This table shows quantitative error for the
synthetic images of the color chart using camera sensitivity func-
tions of two different cameras, Canon 1D and Nikon D40 in [12].
An encoding gamma of 2.2 is applied to synthesize the sRGB im-
ages.

Canon 1Ds Mark III Nikon D40
Max Mean Std Max Mean Std

YIQ 0.077 0.004 0.003 0.076 0.003 0.003
1/3 0.165 0.002 0.002 0.174 0.002 0.002

HSV 0.373 0.024 0.020 0.447 0.023 0.020
YIQ-Luma 0.327 0.224 0.068 0.328 0.222 0.068
1/3-Luma 0.384 0.214 0.063 0.391 0.212 0.063

HSV-Luma 0.577 0.251 0.082 0.626 0.250 0.081

Table 2. [Outdoor scene] This table shows quantitative error for
synthetic images of an outdoor scene using camera sensitivity
functions of two different cameras Canon 1D and Nikon D40
in [12]. An encoding gamma of 2.2 is applied to synthesize the
sRGB images.

proper white-balance and an encoding gamma of 2.2. This
means the input images are as close to ideal sRGB as pos-
sible. We apply these approaches using the proper sRGB
decoding gamma and without any linearization - i.e. we
compute the incorrect “luma”. Although YIQ is defined on
the gamma encoded RGB space, we show results with and
without gamma decoding applied, this is denoted as YIQ
and YIQ-Luma respectively.

Tabs. 1 and 2 show the quantitative error for the color
checker chart and an outdoor scene respectively. The tables
reveal that improper conversion (with linearization) results
in errors ranging from 1% to 5% for two different cameras.
The outdoor scene (shown in Fig. 7) is not as bad, but con-
tains less color variation than the color chart. The estima-
tion of luma, however, results in significant errors, with av-
erage errors ranging from 30% to over 50%.

4.5. Real Camera Images

Our final experiment uses images captured from cam-
eras that were placed next to our spectral camera. The im-
ages have been carefully aligned to the color chart image
using a homography. These real images are captured by
the same models used in our synthetic experiments. Fig. 8
shows the quantitative error between the luminance synthe-
sized by CIE XYZ color matching functions (ground truth)
and the real sRGB images from the Canon 1D camera. The
top row shows the comparison between ground truth lumi-
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Figure 5. This figure shows the quantitative error of improper white-balance on the luminance channel. The white-balance matrices of
three incorrect color temperatures - 2500K, 4000K, and 10000K (the correct white-balance is at 6000K) - are applied on the color chart
image.
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Figure 6. This figure shows the errors that occur when the camera’s true tone-curve is not used to linearize the sRGB values. Errors range
from 10% to 18%.

Canon 1Ds Mark III Nikon D40
Max Mean Std Max Mean Std

YIQ-T 0.137 0.056 0.032 0.078 0.027 0.020
1/3-T 0.211 0.065 0.042 0.171 0.041 0.036

HSV-T 0.382 0.090 0.077 0.532 0.111 0.120
YIQ-G 0.227 0.123 0.054 0.200 0.114 0.043
1/3-G 0.288 0.125 0.063 0.276 0.114 0.057

HSV-G 0.357 0.111 0.067 0.523 0.124 0.087
YIQ-Luma 0.181 0.068 0.047 0.153 0.056 0.037
1/3-Luma 0.222 0.071 0.053 0.213 0.064 0.045

HSV-Luma 0.501 0.159 0.123 0.540 0.168 0.141

Table 3. This table shows quantitative error for the real images
of color chart captured by two different cameras, Canon 1D and
Nikon D40. T denotes the proper tone-curve of the camera and G
denotes the gamma of 2.2.

nance and the luminance from the linearized sRGB using
sRGB gamma correction. The bottom row shows the com-
parison between the ground truth luminance and the lumi-
nance from the linearized sRGB using the camera’s tone-
curve measured in [17]. The results show that it is very im-
portant to use the correct tone-curves to linearize the RGB
color values before computing luminance. It is also worth
noting that in cases of using the correct tone-curve, com-
puting luminance values still has a small error (around 2%)

that is caused by factors such as the inaccuracy of white-
balancing, the CCM accuracy, and the selective color ma-
nipulation noted in [17, 15, 31].

We also examined the different conversion methods with
different linearization, in particular the proper tone-curves
(T), the decoding gamma of 2.2 (G), and without lineariza-
tion. Tab. 3 shows the quantitative errors that occur. The
results show that using the proper tone-curves have the least
amount of error on computing luminance. Interestingly, us-
ing the recommended decoding gamma of 2.2 can lead to
more error than without linearization.

5. Better Alternatives
Sec. 4 showed that luminance conversion is prone to sig-

nificant error. Our analysis is not intended to imply that
prior work using these methods are incorrect, or that their
results would be better if they were able to estimate true
scene luminance. What our results implies is that a many
prior works are incorrectly interpreting what is truly being
processed by their methods. In fact, for many applications,
there is often no reason to attempt a luminance conversion.
In this section, we discuss alternatives to luminance conver-
sion for two well-known tasks, tone-mapping and feature
detection.
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Figure 8. This figure shows the quantitative error between the luminance synthesized by CIE XYZ color matching functions (ground truth)
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from the linearized sRGB using sRGB gamma correction. The bottom row shows the comparison between ground truth luminance and the
luminance from the linearized sRGB using the camera’s tone-curve measured in [17].

5.1. Tone-Mapping

Tone-mapping applies a nonlinear scaling to an image’s
intensity values to enhance contrast. This is often per-
formed by first decomposing an image to its luminance
representation, processing the luminance channel, and then
converting back. However, as we have shown, most lumi-
nance conversions are incorrect, making it hard to interpret
what is truly being processed.

Instead, what is generally desired in tone-mapping is to
modify contrast while maintaining chromaticity in the cur-
rent RGB color space. This means that after processing,
neutral colors will stay “white”, and the chromaticity of
other colors will also not be changed. We examine three
methods: YIQ, HSV, and average-RGB (1/3-RGB), to see
their ability to preserve chromaticity after tone-mapping.
For this experiment, an image of a color chart is transformed
by each method, its corresponding “luminance” is stretched
by the same nonlinear tone-curve, and the new RGB im-
age is obtained by transforming back. Note that the av-
erage-RGB defines only a single-channel; how to use this
and transform back to RGB is explained in the supplemen-
tal material. Fig. 9 shows the effect of tone-mapping op-
erator on the color chromaticity of these methods. The red
points show the original chromaticities while the blue ones
show the chromaticities after tone-mapping. For the neutral
colors, all four methods can preserve their chromaticities.
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Figure 9. This figure shows the change of the color chromatic-
ity of four different methods on tone mapping operator. The red
points show the original chromaticities while the blue ones show
the chromaticities after tone-mapping.

However, only HSV and 1/3-RGB can preserve the chro-
maticity of chromatic colors. The color chromaticities in
the case of YIQ are shifted towards the achromatic point
(e.g. R = G = B). Interestingly, attempting luminance
conversion gives the undesired effect, while non-luminance
methods satisfy the goal of this task.

5.2. Feature Detection

Converting to luminance for feature detection is often
used to reduce the RGB channels to a single image for faster
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Figure 10. This figure shows several examples of SIFT feature de-
tection. The first column is the color input images. The second
and third columns show the results of using Y channel from YIQ
and grayscale images obtained from [21], respectively. The last
column shows the results by applying SIFT feature detection on
three color channels and combining them together.

processing. Here, we experiment with two common fea-
tures, SIFT [20] and Canny edge detection [2]. Both these
methods aim to detect useful image features by examining
image gradient caused by scene object texture or bound-
aries. When single-channel processing is desired, it is not
important to obtain true scene luminance, but a represen-
tation that maintains gradients between scene objects and
texture. To this end, color-to-gray methods (e.g. [6, 8, 21])
that convert an RGB to a gray image while preserving some
notion of RGB contrast are useful. Figs. 10 and 11 show
several examples for Canny edge and SIFT detection on
three different methods: using the Y channel from YIQ,
the saliency-preserving decolorization [21], and processing
all three color channels independently and then aggregat-
ing the results. As can be seen, the color-to-gray conversion
method helps to preserve the color contrast and allows SIFT
and Canny to obtain better features than the simple con-
version Y of YIQ. When faster processing is not needed,
processing all three color channels independently and ag-
gregating the results often give the best performance. See
additional results in our supplemental material.

6. Discussion and Summary
This paper provided analysis of one of the most common

yet incorrectly applied operations used in computer vision
and image processing applications - conversion of a camera
RGB image to a scene luminance representation. To the best
of our knowledge, this is the first paper to systematically
examine the various factors that lead to errors, in particular

sRGB image `Grayscale’ in [21] Y from YIQ 3 channel method 

Figure 11. This figure shows several examples of Canny edge de-
tection. The first column is the color input images. The second and
third columns show the results of using Y channel from YIQ and
grayscale images obtained from [21], respectively. The last col-
umn shows the results by applying Canny edge detection on three
color channels and combining them together.

- 1) incorrect equations, 2) incorrect white-balance, and 3)
improper gamma/tone-curve correction.

Our analysis is not intended to suggest that existing com-
puter vision methods that apply a luminance conversion are
incorrect, or that existing algorithms would benefit from
a more accurate luminance conversion. Instead, our work
serves to justify alternative conversion methods that are not
based on color science for use in converting an sRGB cam-
era image to a single channel representation. In fact, the vast
majority of computer vision algorithms do not rely on the
colorimetric properties of the RGB signals, but instead rely
on cues in terms of signal difference (gradient) that can be
obtained from a number of different types of single-channel
representations. Our hope is that this work will motivate re-
searchers not to feel compelled to apply an erroneous lumi-
nance conversion in order to appear scientifically justified
when alternatives, such as simple average-RGB, are just as
valid and potentially work better.
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space of spectral sensitivity functions for digital color
cameras? In WACV, pages 168–179, 2013. 5, 7

[13] C. Kanan and G. W. Cottrell. Color-to-grayscale: does
the method matter in image recognition? PloS ONE,
7(1), 2012. 2

[14] H. Karaimer and M. S. Brown. A software platform
for manipulating the camera imaging pipeline. In
ECCV, pages 429–444, 2016. 1, 4

[15] S. J. Kim, H. T. Lin, Z. Lu, S. Süsstrunk, S. Lin, and
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